MCP Directory
ServersClientsBlog

xASO - App Store Optimization

AI-powered App Store Optimization platform for mobile apps

Go to xASO
MCP Directory

Model Context Protocol Directory

MKSF LTD
Suite 8805 5 Brayford Square
London, E1 0SG

MCP Directory

  • About
  • Blog
  • Documentation
  • Contact

Menu

  • Servers
  • Clients

© 2025 model-context-protocol.com

The Model Context Protocol (MCP) is an open standard for AI model communication.
Powered by Mert KoseogluSoftware Forge
  1. Home
  2. Servers
  3. jsTextFromImage

jsTextFromImage

GitHub

Get descriptions of images using OpenAI's GPT-4 Vision models, Azure OpenAI, and Anthropic Claude in an easy way.

1
0

JSTextFromImage

npm Version
TypeScript
License
Downloads
Node Version

A powerful TypeScript/JavaScript library for obtaining detailed descriptions of images using various AI models including OpenAI's GPT-4 Vision, Azure OpenAI, and Anthropic Claude. Supports image URLs with batch processing capabilities.

🌟 Key Features

  • 🤖 Multiple AI Providers: Support for OpenAI, Azure OpenAI, and Anthropic Claude
  • 🌐 URL Support: Process images from URLs
  • 📦 Batch Processing: Process multiple images concurrently
  • 📝 TypeScript First: Built with TypeScript for excellent type safety
  • 🔄 Async/Await: Modern Promise-based API
  • 🔑 Flexible Auth: Multiple authentication methods including environment variables
  • 🛡️ Error Handling: Comprehensive error handling

📦 Installation

npm install jstextfromimage

🚀 Quick Start

You can use the services either with environment variables or direct initialization.

Using Environment Variables

import { openai, claude, azureOpenai } from 'jstextfromimage';

// Services will automatically use environment variables
const description = await openai.getDescription('https://example.com/image.jpg');

Direct Initialization

import { OpenAIService, ClaudeService, AzureOpenAIService } from 'jstextfromimage';

// OpenAI custom instance
const customOpenAI = new OpenAIService('your-openai-api-key');

// Claude custom instance
const customClaude = new ClaudeService('your-claude-api-key');

// Azure OpenAI custom instance
const customAzure = new AzureOpenAIService({
 apiKey: 'your-azure-api-key',
 endpoint: 'your-azure-endpoint',
 deploymentName: 'your-deployment-name'
});

OpenAI Service

import { openai } from 'jstextfromimage';

// Single image analysis
const description = await openai.getDescription('https://example.com/image.jpg', {
 prompt: "Describe the main elements of this image",
 maxTokens: 500,
 model: 'gpt-4o'
});

// Batch processing
const imageUrls = [
 'https://example.com/image1.jpg',
 'https://example.com/image2.jpg',
 'https://example.com/image3.jpg'
];

const results = await openai.getDescriptionBatch(imageUrls, {
 prompt: "Analyze this image in detail",
 maxTokens: 300,
 concurrency: 2,
 model: 'gpt-4o'
});

// Process results
results.forEach(result => {
 if (result.error) {
 console.error(`Error processing ${result.imageUrl}: ${result.error}`);
 } else {
 console.log(`Description for ${result.imageUrl}: ${result.description}`);
 }
});

Claude Service

import { claude } from 'jstextfromimage';

// Single image analysis
const description = await claude.getDescription('https://example.com/artwork.jpg', {
 prompt: "Analyze this artwork, including style and composition",
 maxTokens: 1000,
 model: 'claude-3-sonnet-20240229'
});

// Batch processing
const artworkUrls = [
 'https://example.com/artwork1.jpg',
 'https://example.com/artwork2.jpg'
];

const analyses = await claude.getDescriptionBatch(artworkUrls, {
 prompt: "Provide a detailed art analysis",
 maxTokens: 800,
 concurrency: 2,
 model: 'claude-3-sonnet-20240229'
});

Azure OpenAI Service

import { azureOpenai } from 'jstextfromimage';

// Single image analysis
const description = await azureOpenai.getDescription('https://example.com/scene.jpg', {
 prompt: "Describe this scene in detail",
 maxTokens: 400,
 systemPrompt: "You are an expert in visual analysis."
});

// Batch processing
const sceneUrls = [
 'https://example.com/scene1.jpg',
 'https://example.com/scene2.jpg'
];

const analyses = await azureOpenai.getDescriptionBatch(sceneUrls, {
 prompt: "Analyze the composition and mood",
 maxTokens: 500,
 concurrency: 3,
 systemPrompt: "You are an expert cinematographer."
});

💡 Configuration

Default Values

// OpenAI defaults
{
 model: 'gpt-4o',
 maxTokens: 300,
 prompt: "What's in this image?",
 concurrency: 3 // for batch processing
}

// Claude defaults
{
 model: 'claude-3-sonnet-20240229',
 maxTokens: 300,
 prompt: "What's in this image?",
 concurrency: 3
}

// Azure OpenAI defaults
{
 maxTokens: 300,
 prompt: "What's in this image?",
 systemPrompt: "You are a helpful assistant.",
 concurrency: 3
}

Local File Support

import { openai } from 'jstextfromimage';

// Single local file
const description = await openai.getDescription('/path/to/local/image.jpg', {
 prompt: "Describe this image",
 maxTokens: 300,
 model: 'gpt-4o'
});

// Mix of local files and URLs in batch processing
const images = [
 '/path/to/local/image1.jpg',
 'https://example.com/image2.jpg',
 '/path/to/local/image3.png'
];

const results = await openai.getDescriptionBatch(images, {
 prompt: "Analyze each image",
 maxTokens: 300,
 concurrency: 2
});

Environment Variables

# OpenAI
OPENAI_API_KEY=your-openai-api-key

# Claude
ANTHROPIC_API_KEY=your-claude-api-key

# Azure OpenAI
AZURE_OPENAI_API_KEY=your-azure-api-key
AZURE_OPENAI_ENDPOINT=your-azure-endpoint
AZURE_OPENAI_DEPLOYMENT=your-deployment-name

Options Interfaces

// Base options for all services
interface BaseOptions {
 prompt?: string;
 maxTokens?: number;
 concurrency?: number; // For batch processing
}

// OpenAI specific options
interface OpenAIOptions extends BaseOptions {
 model?: string;
}

// Claude specific options
interface ClaudeOptions extends BaseOptions {
 model?: string;
}

// Azure OpenAI specific options
interface AzureOpenAIOptions extends BaseOptions {
 systemPrompt?: string;
}

// Azure OpenAI configuration
interface AzureOpenAIConfig {
 apiKey?: string;
 endpoint?: string;
 deploymentName?: string;
 apiVersion?: string;
}

// Batch processing results
interface BatchResult {
 imageUrl: string;
 description: string;
 error?: string;
}

🔍 Error Handling Examples

// Single image with error handling
try {
 const description = await openai.getDescription(imageUrl, {
 maxTokens: 300
 });
 console.log(description);
} catch (error) {
 console.error('Failed to process image:', error);
}

// Batch processing with retry
async function processWithRetry(imageUrls: string[], maxRetries = 3) {
 const results = await openai.getDescriptionBatch(imageUrls, {
 maxTokens: 300,
 concurrency: 2
 });
 
 // Handle failed items with retry
 const failedItems = results.filter(r => r.error);
 let retryCount = 0;
 
 while (failedItems.length > 0 && retryCount < maxRetries) {
 const retryUrls = failedItems.map(item => item.imageUrl);
 const retryResults = await openai.getDescriptionBatch(retryUrls, {
 maxTokens: 300,
 concurrency: 1 // Lower concurrency for retries
 });
 
 // Update results with successful retries
 retryResults.forEach(result => {
 if (!result.error) {
 const index = results.findIndex(r => r.imageUrl === result.imageUrl);
 if (index !== -1) {
 results[index] = result;
 }
 }
 });
 
 retryCount++;
 }
 
 return results;
}

🛠️ Development

# Install dependencies
npm install

# Run tests
npm test

# Build the project
npm run build

# Run linting
npm run lint

🤝 Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -am 'feat: add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

📝 License

This project is licensed under the MIT License - see the LICENSE file for details.

💬 Support

For support, please open an issue on GitHub.

Repository

OR
OrenGrinker

OrenGrinker/jsTextFromImage

Created

November 21, 2024

Updated

November 27, 2024

Language

TypeScript

Category

AI